Proteomic analysis of Clostridium acetobutylicum in butanol production from lignocellulosic biomass
نویسندگان
چکیده
Background Plant biomass is an abundant and renewable source of energy rich carbohydrates that can be efficiently converted by microbes into biofuels [1]. Butanol is considered as a second generation biofuel when it is produced from lignocellulosic biomass comprising of agricultural and garden wastes that does not compete with the food supplies [2]. Clostridium acetobutylicum is a gram positive, spore forming, obligately anaerobic bacteria capable of converting different sugars from lignocellulosic biomass to butanol through acetone – butanol – ethanol (ABE) fermentation process [3]. However, the production of butanol from ABE fermentation process is not economically viable and studies have been performed to understand the utilization of lignocellulosic biomass and regulation of butanol production to improve butanol productivity [4]. Successful industrial butanol production process through ABE fermentation requires complete understanding of the C .acetobutylicum. Shotgun proteomics provides a direct approach to study the whole proteome of an organism at molecular level in depth. Therefore, this paper focuses on shotgun proteomic profiling of C. acetobutylicum ATCC 824 from butanol fermentation process, elucidating the molecular functional mechanisms of C.acetobutylicum in butanol production.
منابع مشابه
Quantitative proteomic analysis of the influence of lignin on biofuel production by Clostridium acetobutylicum ATCC 824
BACKGROUND Clostridium acetobutylicum has been a focus of research because of its ability to produce high-value compounds that can be used as biofuels. Lignocellulose is a promising feedstock, but the lignin-cellulose-hemicellulose biomass complex requires chemical pre-treatment to yield fermentable saccharides, including cellulose-derived cellobiose, prior to bioproduction of acetone-butanol-e...
متن کاملDeveloping a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess
BACKGROUND Consolidated bioprocessing (CBP) of butanol production from cellulosic biomass is a promising strategy for cost saving compared to other processes featuring dedicated cellulase production. CBP requires microbial strains capable of hydrolyzing biomass with enzymes produced on its own with high rate and high conversion and simultaneously produce a desired product at high yield. However...
متن کاملA Quantitative System-Scale Characterization of the Metabolism of Clostridium acetobutylicum
UNLABELLED Engineering industrial microorganisms for ambitious applications, for example, the production of second-generation biofuels such as butanol, is impeded by a lack of knowledge of primary metabolism and its regulation. A quantitative system-scale analysis was applied to the biofuel-producing bacterium Clostridium acetobutylicum, a microorganism used for the industrial production of sol...
متن کاملProteome Reference Map and Comparative Proteomic Analysis between a Wild Type <italic>Clostridium acetobutylicum</italic> DSM 1731 and its Mutant with Enhanced Butanol Tolerance and Butanol Yield
The solventogenic bacterium Clostridium acetobutylicum is an important species of the Clostridium community. To develop a fundamental tool that is useful for biological studies of C. acetobutylicum, we established a high resolution proteome reference map for this species. We identified 1206 spots representing 564 different proteins by mass spectrometry, covering approximately 50% of major metab...
متن کاملGenome Sequence of Clostridium acetobutylicum GXAS18-1, a Novel Biobutanol Production Strain
Clostridium acetobutylicum is an organism involved in the production of acetone and butanol by traditional acetone-butanol-ethanol fermentation (ABE). We report the draft genome sequence of C. acetobutylicum strain GXAS18-1, which can produce ABE directly from cassava flour.
متن کامل